

Abstracts

Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method

Y. Kobayashi and M. Katoh. "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method." 1985 Transactions on Microwave Theory and Techniques 33.7 (Jul. 1985 [T-MTT]): 586-592.

Improvements both in accuracy and speed are described for the technique of measuring the microwave dielectric properties of low-loss materials by using a dielectric rod resonator short-circuited at both ends by two parallel conducting plates. A technique for measuring the effective surface resistance $R_{sub s}$ of the conducting plates is proposed to allow the accurate measurement of the loss tangent $\tan \delta$. By means of the first-order approximation, the expressions are analytically derived for estimating the errors of the measured values of relative permittivity $\epsilon_{sub r}$, $\tan \delta$, and $R_{sub r}$, for measuring the temperature coefficient of $\epsilon_{sub r}$, and for determining the required size of the conducting plates. Computer-aided measurements are realized by using these expressions. It is shown that the temperature dependence of $R_{sub s}$, should be considered in the $\tan \delta$ measurement. The copper plates used in this experiment have the relative conductivity of 91.0 ± 2.7 percent at 20°C , estimated from the measured $R_{sub s}$ value. For a 99.9-percent alumina ceramic rod sample, the results measured at 7.69 GHz and 25°C show that $\epsilon_{sub r} = 9.687 \pm 0.003$ and $\tan \delta = (1.6 \pm 0.2) \times 10^{-5}$. The temperature coefficients measured between 25 and 100°C are $112 \times 10^{-6}/^\circ\text{C}$ for $\epsilon_{sub r}$, and $23 \times 10^{-4}/^\circ\text{C}$ for $\tan \delta$.

[Return to main document.](#)

Click on title for a complete paper.